

Nutrient Management Summary

Ryan Sterry, UW-Extension March 28, 2017

A farm nutrient management plan is a strategy for obtaining the maximum return from on and off-farm fertilizer resources in a manner that protects the quality of nearby water resources.

Nutrient Management Mechanics

- Measure current levels of soil fertility
- Determine crop nutrient needs
- Account for on-farm nutrient resources
 - Manure applications
 - Legumes in crop rotation
 - Residual soil nitrate
- Adjust commercial fertilizer application rates

Basic Components

- Soil test reports
- Manure inventory
- Nutrient crediting
 - Manure, legumes, other (biosolids, whey, etc.)
- Manure spreading plan
- Soil conservation plan

Soil Testing

- Soil Test Reports:
 - Within last 4 years from Certified Lab
 - Minimum 1 sample per 5 acres
- Standard lab test results include:
 - soil pH, organic matter (%), P (ppm), K (ppm)
- N recommendations based on crop grown, crop need, and N credits
- Soil testing key for managing P, K, and pH

On-Farm Nutrient Sources: Manure

- Inventory of species, growth stage, size, production level for total manure production
- Available nutrient content
 - Book values
 - Laboratory analysis
- Manure application rate & uniform application

Crop Removal Compared to Manure Nutrient Content

- Corn, soybean & alfalfa utilize approx. 3X more N than P
- Manure supplies N & P₂O₅ at approximately a 1:1 ratio
- Soil test P levels increase over time if applying manure to meet crop N need
- Applying rotational P need rather than single year is permitted (planning for perennial hay crop)

	N	P_2O_5	K ₂ O
		<u>lb</u> /a/ <u>yr</u>	
Corn (160 bu/a)	160*	60	45
Corn silage (23 ton/a)	160*	85	135
Soybean (40 bu/a)	125	35	40
Alfalfa (5 ton/a)	250	65	250

SPECIES	N	P ₂ O ₅	K ₂ O
Dairy (>20% DM)	$2(3/3)^2$	3	6
Dairy (11-20% DM)	$2(2/3)^2$	3	5
Beef	3 (4/5)	6	10
Swine	7 (9/12)	10	8
Chicken	24 (27/29)	35	26
Turkey	26 (28/31)	35	25

¹ Source: Wisconsin soil test labs.

² Values in parenthesis for incorporated manure: (1 hr. - 3 days / < 1 hr.).

Visual Corn N Assessment

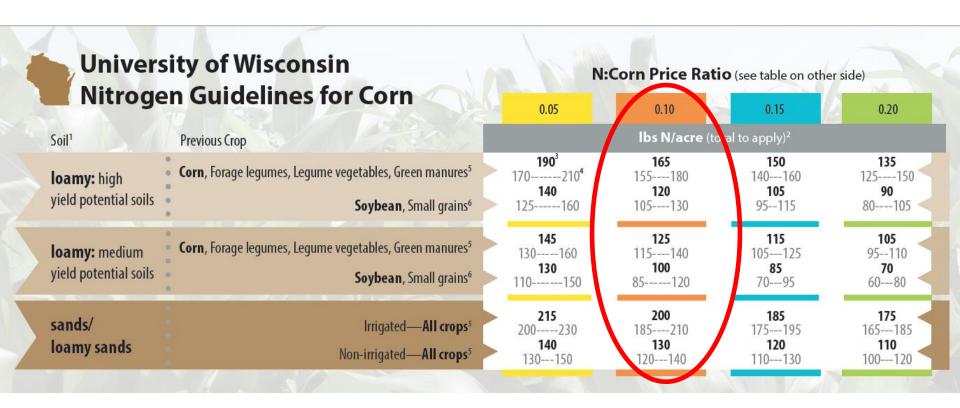
Corn color is an indicator of N deficiency (yellow corn) but is a poor indicator of N adequacy

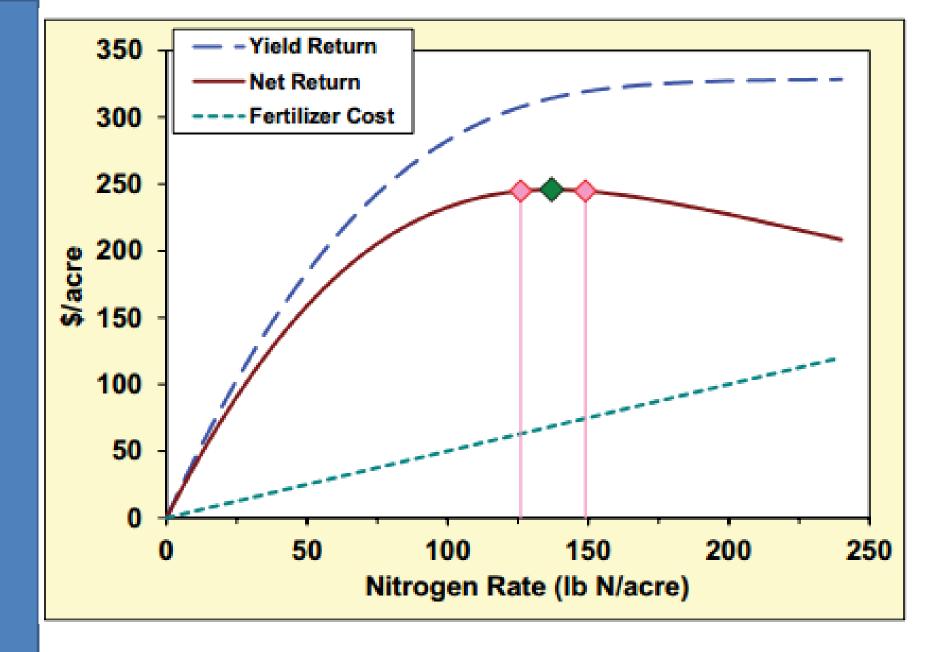
N is mobile in plants, deficiency symptoms show on older leaves

But how green is green enough?

UW *Corn & Wheat Nitrogen*Recommendations

- Maximum Return to N (MRTN)
 - Cost of N
 - Price of corn
- Soil texture & yield potential, Organic Matter, Irrigation
- Cropping systems
 - Corn after <u>soybeans</u>, small grains
 - Corn after <u>corn</u>, forage legumes, green manures


CORN YIELD GOAL NO LONGER CONSIDERED



Nitrogen: Corn Price Ratios

N:Corn Pri	ce Rati	o Table	*				Price o	of Corr) (\$/bu	corn)				
Color Key for ratio	2	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00	5.25	5.50
	0.25	0.10	0.09	0.08	0.08	0.07	0.07	0.06	0.06	0.06	0.05	0.05	0.05	0.05
0.05	0.30	0.12	0.11	0.10	0.09	0.09	0.08	0.08	0.07	0.07	0.06	0.06	0.06	0.05
0.10	0.30 0.35 0.40	0.14	0.13	0.12	0.11	0.10	0.09	0.09	0.08	0.08	0.07	0.07	0.07	0.06
		0.16	0.15	0.13	0.12	0.11	0.11	0.10	0.09	0.09	0.08	0.08	0.08	0.07
(N qI/\$)	0.45	0.18	0.16	0.15	0.14	0.13	0.12	0.11	0.11	0.10	0.10	0.09	0.09	0.08
1/\$)	0.50	0.20	0.18	0.17	0.15	0.14	0.13	0.13	0.12	0.11	0.11	0.10	0.10	0.09
Z ;	0.55	0.22	0.20	0.18	0.17	0.16	0.15	0.13	0.13	0.12	0.12	0.11	0.11	0.10
Price of N	0.60	0.24	0.22	0.20	0.18	0.17	0.16	0.14	0.14	0.13	0.13	0.12	0.11	0.11
Pri	0.65	0.26	0.24	0.22	0.20	0.19	0.17	0.16	0.15	0.14	0.14	0.13	0.12	0.12
	0.70	0.28	0.25	0.23	0.22	0.20	0.19	0.18	0.16	0.16	0.15	0.14	0.13	0.13
	0.45 0.50 0.55 0.60 0.65 0.70 0.75	0.30	0.27	0.25	0.23	0.21	0.20	0.19	0.18	0.17	0.16	0.15	0.14	0.14
	0.80	0.32	0.29	0.27	0.25	0.23	0.21	0.20	0.19	0.18	0.17	0.16	0.15	0.15

Price Adjusted N Guidelines for Corn


N Recommendations For Most Situations

- Soybeans 0 lb/a
- Alfalfa0 lb/a
 - Alfalfa Seeding Year 0-30 lb/a
- Oat/peas 20-60 lb/a
- Grass Hay 100-160 lb/a
- Pasture 0-160 lb/a
 - Depends greatly on % legume / clover

On-Farm Sources: Legumes

- N Credits for Alfalfa Depend on:
 - Soil texture (sands vs. others)
 - Harvest management
 - Stand density
- Does NOT Depend on:
 - Time of killing (spring vs. fall)
 - Method of killing (tillage vs. herbicide)
 - Tillage

1st Year N Credits for Alfalfa

		n or Fine ed Soils	Sandy	Sandy Soils				
	> 8 inches	< 8 inches regrowth	> 8 inches regrowth					
Alfalfa Stand Density NITROGEN CREDIT								
Good >70%	190	150	140	100				
Fair 30-70%	160	120	110	70				
Poor <30%	130	90	80	40				

Nitrogen Credits

- 2nd Year N credits Alfalfa up to 50 lbs (not on poor stands or on sands)
- Red Clover
 - ~80% of alfalfa credit
- Soybean ~20 lbs N/a
 - no credit on sands or loamy sands
 - <u>NOTE</u>: soybean N credit no longer exists in the revised, price adjusted (MRTN), guidelines for corn N

How does N become available?

(Soil Temp. > 50 degrees F)

Manure

Legume

Commercial N

Soil

Available

N

*Plants utilize inorganic N, cannot utilize organic N

Nitrogen Availability is Temperature and Moisture Dependent

- Manure applied in the fall retains a full nitrogen credit the following spring.
- Legume hay killed in the fall retains the same credit as hay killed in the spring.
- A cool spring may delay release of nitrogen and cause an early-season nitrogen deficiency.

Soil Tests To Measure Nitrogen

Preplant Soil Nitrate Test

- Soil sampled preplant in one foot increments to a depth of two feet
- Measures nitrate carryover from previous fall (but not N credits)
- Environmental conditions can affect interpretation of management
- Not effective for N recommendation next season
- Experimental: test in fall to prioritize fields for cover crops

Soil Tests To Measure Nitrogen

Pre-sidedress Soil Nitrate Test

- Sidedress / topdress = application after crop is planted
- Soil sampled to a depth of one foot when corn plants are 6-12 inches tall.
- Useful to confirm nitrogen credits.
- Not applicable on sands, loamy sands.

Pre-sidedress Soil Nitrate Test

- Estimates N availability from organic sources
 - Measures N credits from manure
 - Useful when manure & legume history is unknown
- Partial accounting for carry-over nitrate
- Short sampling & analysis time
- Sidedress N if needed

Nitrification Inhibitors

Nitrification inhibitors (NI) are chemicals that reduce the rate at which ammonium is converted to nitrate by killing or interfering with the metabolism of Nitrosomonas bacteria

- Commercially known as N-Serve and Instinct
- Effectiveness weather dependent
- N-Serve is oil based and may not mix well with liquid manure, whereas Instinct is water soluble and microencapsulated and may mix better

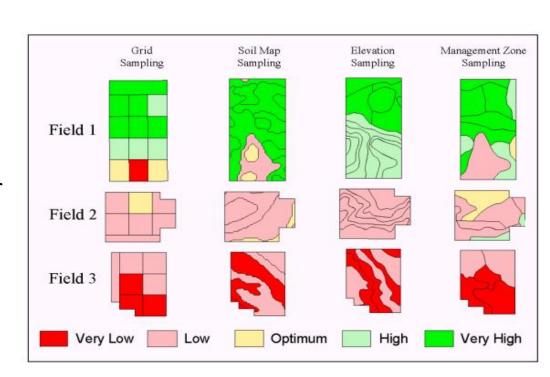
Anaerobic Digesters

- Benefits for renewable energy, cost of constructing manure storage, odor control, etc.
- Digesters utilize the organic matter in manure
- Misconception: digesters reduce nutrients
 - N, P & K transformed but amount coming out is same as amount going in
 - N form changes from organic to inorganic

Precision Ag

- Management of in-field variation
- Optimization of inputs
- Increase profit through reduced expenses

- Precision Apps on the market...
 - SST Software Sirrus
 - AgDNA
 - Trimble Connected Farm
 - AgLeader SMS Mobile



Grid / Zone soil sampling

- Precision mapping and application technology allows for grid soil sampling in 1 acre or smaller increments
- Zone sampling overlays multiple mapping layers such as topography, yields, soil name, etc.

Aforementioned Apps include soil sampling modes

- Grid/Zone layout
- Barcode generation for sample identification
- Associate lab results and generate prescription maps

Dunn County Field Lime Example

- 1 ac grid soil sampling @ 120 ac
- 2 ton/ac applied in spring @ \$26/ton = \$6,240
- Soil sampling showed variation from 0 15 ton/ac
 - Not practical ... assume 6 ton/ac max
- Aim for the middle @ 3 ton/ac additional application = \$9,360 additional cost in the fall
- Variable rate came out to be an average rate of 1.57 ton/ac with some areas getting 3 ton/ac while others received 0 ton/ac
- Total applied 188.33 ton costing \$4,897 (\$4,463 dif.)
- Soil sampling in the spring should show less variation in soil pH across the field

Example Grid Soil Sampling Results - Soil pH

Cover Crops

- Renewed interest
- More unknown than known
- Fall '16 near ideal for cover crop establishment
- Multiple potential benefits
 - Residue cover to reduce soil loss
 - Build soil organic matter
 - Soil microbe activity
 - Nutrient management

Growing season & planting date matter

Cover Crops & Nitrogen

- Legumes or legume mixes can supply N to next crop "Green Manure N Credit"
- Grasses and brassica's can scavenge N
 - Currently no N credit in WI for rye & brassica's
 - Current WI data indicates N taken up by these crops is used in decomposition of their biomass and/or delayed in release
 - More testing needed to draw conclusive N credit recommendation

Cover Crop Nitrate Traps

- Grass crops that establish quickly:
 - Winter rye, oats, barley, Italian rye, sorghum-sudan
- Brassicas and legumes will also take up N, but do not establish as quickly
- Oats, sorghum-sudan, barley and Italian rye (most times) winter kill in WI.
- Winter rye will re-grow in spring
 - Advantage to N uptake and soil health parameters
 - May be easiest cover crop to establish in our area
 - Downside: needs to be terminated before next crop, may cause moisture and nutrient stress for next crop

